309 research outputs found

    Polynomial-Time, Semantically-Secure Encryption Achieving the Secrecy Capacity

    Get PDF
    In the wiretap channel setting, one aims to get information-theoretic privacy of communicated data based only on the assumption that the channel from sender to receiver is noisier than the one from sender to adversary. The secrecy capacity is the optimal (highest possible) rate of a secure scheme, and the existence of schemes achieving it has been shown. For thirty years the ultimate and unreached goal has been to achieve this optimal rate with a scheme that is polynomial-time. (This means both encryption and decryption are proven polynomial time algorithms.) This paper finally delivers such a scheme. In fact it does more. Our scheme not only meets the classical notion of security from the wiretap literature, called MIS-R (mutual information security for random messages) but achieves the strictly stronger notion of semantic security, thus delivering more in terms of security without loss of rate

    New Proofs for NMAC and HMAC: Security Without Collision-Resistance

    Get PDF
    HMAC was proved by Bellare, Canetti and Krawczyk [2] to be a PRF assuming that (1) the underlying compression function is a PRF, and (2) the iterated hash function is weakly collision-resistant. However, recent attacks show that assumption (2) is false for MD5 and SHA-1, removing the proof-based support for HMAC in these cases. This paper proves that HMAC is a PRF under the sole assumption that the compression function is a PRF. This recovers a proof based guarantee since no known attacks compromise the pseudorandomness of the compression function, and it also helps explain the resistance-to-attack that HMAC has shown even when implemented with hash functions whose (weak) collision resistance is compromised. We also show that an even weaker-than-PRF condition on the compression function, namely that it is a privacy-preserving MAC, suffices to establish HMAC is a MAC as long as the hash function meets the very weak requirement of being computationally almost universal, where again the value lies in the fact that known attacks do not invalidate the assumptions made

    Code-Based Game-Playing Proofs and the Security of Triple Encryption

    Get PDF
    The game-playing technique is a powerful tool for analyzing cryptographic constructions. We illustrate this by using games as the central tool for proving security of three-key triple-encryption, a long-standing open problem. Our result, which is in the ideal-cipher model, demonstrates that for DES parameters (56-bit keys and 64-bit plaintexts) an adversary\u27s maximal advantage is small until it asks about 2782^{78} queries. Beyond this application, we develop the foundations for game playing, formalizing a general framework for game-playing proofs and discussing techniques used within such proofs. To further exercise the game-playing framework we show how to use games to get simple proofs for the PRP/PRF Switching Lemma, the security of the basic CBC~MAC, and the chosen-plaintext-attack security of OAEP

    Robust Computational Secret Sharing and a Unified Account of Classical Secret-Sharing Goals

    Get PDF
    We give a unified account of classical secret-sharing goals from a modern cryptographic vantage. Our treatment encompasses perfect, statistical, and computational secret sharing; static and dynamic adversaries; schemes with or without robustness; schemes where a participant recovers the secret and those where an external party does so. We then show that Krawczyk\u27s 1993 protocol for robust computational secret sharing (RCSS) need not be secure, even in the random-oracle model and for threshold schemes, if the encryption primitive it uses satisfies only one-query indistinguishability (ind1), the only notion Krawczyk defines. Nonetheless, we show that the protocol is secure (in the random-oracle model, for threshold schemes) if the encryption scheme also satisfies one-query key-unrecoverability (key1). Since practical encryption schemes are ind1+key1 secure, our result effectively shows that Krawczyk\u27s RCSS protocol is sound (in the random-oracle model, for threshold schemes). Finally, we prove the security for a variant of Krawczyk\u27s protocol, in the standard model and for arbitrary access structures, assuming ind1 encryption and a statistically-hiding, weakly-binding commitment scheme

    A Characterization of Chameleon Hash Functions and New, Efficient Designs

    Get PDF
    This paper shows that chameleon hash functions and Sigma protocols are equivalent. We provide a transform of any suitable Sigma protocol to a chameleon hash function, and also show that any chameleon hash function is the result of applying our transform to some suitable Sigma protocol. This enables us to unify previous designs of chameleon hash functions, seeing them all as emanating from a common paradigm, and also obtain new designs that are more efficient than previous ones. In particular, via a modified version of the Fiat-Shamir protocol, we obtain the fastest known chameleon hash function with a proof of security based on the STANDARD factoring assumption. The increasing number of applications of chameleon hash functions, including on-line/off-line signing, chameleon signatures, designated-verifier signatures and conversion from weakly-secure to fully-secure signatures, make our work of contemporary interest

    Policy-Based Signatures

    Get PDF
    We introduce policy-based signatures (PBS), where a signer can only sign messages conforming to some authority-specified policy. The main requirements are unforgeability and privacy, the latter meaning that signatures not reveal the policy. PBS offers value along two fronts: (1)~On the practical side, they allow a corporation to control what messages its employees can sign under the corporate key. (2)~On the theoretical side, they unify existing work, capturing others forms of signatures as special cases or allowing them to be easily built. Our work focuses on definitions of PBS, proofs that this challenging primitive is realizable for arbitrary policies, efficient constructions for specific policies, and a few representative applications

    The Security of Practical Two-Party RSA Signature Schemes

    Get PDF
    In a two-party RSA signature scheme, a client and server, each holding a share of an RSA decryption exponent dd, collaborate to compute an RSA signature under the corresponding public key N,eN,e known to both. This primitive is of growing interest in the domain of server-aided password-based security, where the client\u27s share of dd is based on its password. To minimize cost, designers are looking at very simple, practical protocols based on the early ideas of Boyd, but their security is unclear. We analyze a class of these protocols. We suggest two notions of security for two-party signature schemes and provide proofs of security for the schemes in our class based on assumptions about RSA and the hash function underlying the scheme

    Non-Malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-based Characterization

    Get PDF
    We prove the equivalence of two definitions of non-malleable encryption, one based on the simulation approach of Dolev, Dwork and Naor and the other based on the comparison approach of Bellare, Desai, Pointcheval and Rogaway. Our definitions are slightly stronger than the original ones. The equivalence relies on a new characterization of non-malleable encryption in terms of the standard notion of indistinguishability of Goldwasser and Micali. We show that non-malleability is equivalent to indistinguishability under a ``parallel chosen ciphertext attack,\u27\u27 this being a new kind of chosen ciphertext attack we introduce, in which the adversary\u27s decryption queries are not allowed to depend on answers to previous queries, but must be made all at once. This characterization simplifies both the notion of non-malleable encryption and its usage, and enables one to see more easily how it compares with other notions of encryption. The results here apply to non-malleable encryption under any form of attack, whether chosen-plaintext, chosen-ciphertext, or adaptive chosen-ciphertext

    Symmetric and Dual PRFs from Standard Assumptions: A Generic Validation of an HMAC Assumption

    Get PDF
    The security of HMAC is proven under the assumption that its compression function is a dual PRF, meaning a PRF when keyed by either of its two inputs. But, not only do we not know whether particular compression functions really are dual PRFs, we do not know if dual PRFs even exist. What if the goal is impossible? This paper addresses this with a foundational treatment of dual PRFs, giving constructions based on standard assumptions. This provides what we call a generic validation of the dual PRF assumption for HMAC. Our approach is to introduce and construct symmetric PRFs, which imply dual PRFs and may be of independent interest. We give a general construction of a symmetric PRF based on a function having a weak form of collision resistance coupled with a leakage hardcore function, a strengthening of the usual notion of hardcore functions we introduce. We instantiate this general construction in two ways to obtain a symmetric and dual PRF assuming (1) Any collision-resistant hash function, or (2) Any one-way permutation. A construction based on any one-way function evades us and is left as an intriguing open problem
    • …
    corecore